Throughout these notes we will frequently refer to the Sturm-Liouville problem:

$$
\begin{array}{lr}
-\left[p(x) y^{\prime}\right]^{\prime}+q(x) y=\lambda r(x) y, & 0<x<1 \\
\alpha_{1} y(0)+\alpha y^{\prime}(0)=0, & \beta_{1} y(1)+\beta_{2} y^{\prime}(1)=0 \tag{1}
\end{array}
$$

the function $r(x)$ is called the weight function of the Sturm-Liouville problem. The boundary conditions here are called separated since each condition only depend on one of the boundaries (i.e., there is nothing like $\left.y(0)+y^{\prime}(1)=0\right)$.

It is commonplace to define the linear homogeneous differential operator L on the vector space of $\mathcal{C}^{2}([0,1])$ functions by:

$$
L[y]=-\left[p(x) y^{\prime}\right]^{\prime}+q(x) y
$$

This allows us to rewrite the Sturm-Liouville equation (1) as:

$$
L[y]=\lambda r(x) y
$$

Define the inner product of two real valued functions u, v by:

$$
\langle u, v\rangle=\int_{0}^{1} u(x) v(x) ; d x
$$

Then we have what is known as Lagrange's identity:

$$
\begin{equation*}
\langle L[u], v\rangle-\langle u, L[v]\rangle=0 \tag{2}
\end{equation*}
$$

If a linear homogeneous differential operator L satisfies (2), the operator is called Self-Adjoint.

Theorem 1. If ϕ_{1} and ϕ_{2} are two eigenfunctions of the Sturm-Liouville problem (1) corresponding to eigenvalues λ_{1} and λ_{2}, respectively, and if $\lambda_{1} \neq \lambda_{2}$, then:

$$
\int_{0}^{1} r(x) \phi_{1}(x) \phi_{2}(x) d x=0
$$

This theorem says that the eigenfunctions of (1) are orthogonal with respect to the weight function $r(x)$. Another way of saying this is that they are orthogonal in the r-weighted inner product of functions:

$$
\langle u, v\rangle_{r}=\int_{0}^{1} r(x) u(x) v(x) d x
$$

Let $y_{1}, y_{2}, \ldots, y_{n}, \ldots$ be the eigenfunctions of (1). We say that the eigenfunction y_{n} is normalized with respect to the weight function $r(x)$ if:

$$
\left\langle y_{n}, y_{n}\right\rangle_{r}=1
$$

If each of the eigenfunctions are normalized already, we see that the set $\left\{y_{n}\right\}$ forms an orthonormal set with respect to the weight function $r(x)$. If the eigenfunction y_{n} is not normalized, to normalize it we multiply y_{n} by a constant k_{n} and demand that:

$$
\left\langle k_{n} y_{n}, k_{n} y_{n}\right\rangle_{r}=\int_{0}^{1} r(x) k_{n}^{2} y_{n}^{2} d x=1
$$

then use that to solve for k_{n}. Then the function $\phi_{n}=k_{n} y_{n}$ is called the normalized eigenfunction.
Since the ϕ_{n} (assuming that they are all normalized) above form an orthonormal set, we can attempt to expand a function f (satisfying suitable conditions) as follows. Supposing that:

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

then since the functions ϕ_{n} are orthonormal in the r-weighted inner product we get that:

$$
c_{n}=\left\langle f(x), \phi_{n}(x)\right\rangle_{r} .
$$

